login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332562
a(n) = number formed by concatenating the decimal digits of 44, 45, 46, ..., 44+n.
2
44, 4445, 444546, 44454647, 4445464748, 444546474849, 44454647484950, 4445464748495051, 444546474849505152, 44454647484950515253, 4445464748495051525354, 444546474849505152535455, 44454647484950515253545556, 4445464748495051525354555657
OFFSET
0,1
COMMENTS
This is an instance of a sequence arising in A332580.
As of Feb 24 2020, it is an open question as to whether there is an N such that a(N) is divisible by 44+N+1. If such an N exists, N > 10^11, as shown by Joseph Myers (see A332580).
We have now shown that N = 2783191412912. See A332580 and the attached paper. - N. J. A. Sloane, Apr 28 2020
LINKS
J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
MAPLE
a:= n-> parse(cat($44..44+n)):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 24 2020
MATHEMATICA
Nest[Append[#, 10^IntegerLength[#2]*#1[[-1]] + #2 ] & @@ {#, 44 + Length@ #} &, {44}, 13] (* Michael De Vlieger, Feb 24 2020 *)
Table[FromDigits[Flatten[IntegerDigits/@Range[44, 44+n]]], {n, 0, 20}] (* Harvey P. Dale, Jul 19 2024 *)
PROG
(Magma) [Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [44..n]])): n in [44..60]]; // Vincenzo Librandi, Feb 26 2020
CROSSREFS
Cf. A332580.
Sequence in context: A200899 A220599 A304460 * A078279 A268548 A203974
KEYWORD
nonn,base
AUTHOR
STATUS
approved