Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Aug 27 2021 11:19:53
%S 2,7,14,3,6,47,14,4,10,20,25,11,5,31,254,15,18,55,6,10,22,44,14,23,11,
%T 7,86,27,30,959,62,16,34,8,73,35,17,24,163,39,42,127,9,22,46,92,62,19,
%U 23,15,158,51,10,20,75,28,58,116,121,59,29,127,254,11
%N a(n) is the smallest k such that n+(n+1)+(n+2)+...+(n+k) is divisible by n+k+1.
%C Note that (n+(n+1)+(n+2)+...+(n+k))/(n+k+1) = A332544(n)/(n+k+1) = A082183(n-1). See the Myers et al. link for proof. - _N. J. A. Sloane_, Apr 30 2020
%C We can always take k = n^2-2*n-1, for then the sum in the definition becomes (n+1)*n*(n-1)*(n-2)/2, which is an integral multiple of n+k+1 = n*(n-1). So a(n) always exists. - _N. J. A. Sloane_, Feb 20 2020
%H Seiichi Manyama, <a href="/A332542/b332542.txt">Table of n, a(n) for n = 3..10000</a>
%H J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], 2020-2021.
%e n=4: we get 4 -> 4+5=9 -> 9+6=15 -> 15+7=22 -> 22+8=30 -> 30+9=39 -> 39+10=49 -> 49+11=60, which is divisible by 12, and took k=7 steps, so a(4) = 7. Also A332543(4) = 12, A332544(4) = 60, and A082183(3) = 60/12 = 5.
%p grow2 := proc(n,M) local p,q,k; # searches out to a limit of M
%p # returns n, k (A332542(n)), n+k+1 (A332543(n)), p (A332544(n)), and q (which appears to match A082183(n-1))
%p for k from 1 to M do
%p if ((k+1)*n + k*(k+1)/2) mod (n+k+1) = 0 then
%p p := (k+1)*n+k*(k+1)/2;
%p q := p/(n+k+1); return([n,k,n+k+1,p,q]);
%p fi;
%p od:
%p # if no success, return -1's
%p [n,-1,-1,-1,-1]; end; # _N. J. A. Sloane_, Feb 18 2020
%t a[n_] := NestWhile[#1+1&,0,!IntegerQ[Divide[(#+1)*n+#*(#+1)/2,n+#+1]]&]
%t a/@Range[3,100] (* _Bradley Klee_, Apr 30 2020 *)
%o (Ruby)
%o def A(n)
%o s = n
%o t = n + 1
%o while s % t > 0
%o s += t
%o t += 1
%o end
%o t - n - 1
%o end
%o def A332542(n)
%o (3..n).map{|i| A(i)}
%o end
%o p A332542(100) # _Seiichi Manyama_, Feb 19 2020
%o (PARI) a(n) = my(k=1); while (sum(i=0, k, n+i) % (n+k+1), k++); k; \\ _Michel Marcus_, Aug 26 2021
%o (Python)
%o def a(n):
%o k, s = 1, 2*n+1
%o while s%(n+k+1) != 0: k += 1; s += n+k
%o return k
%o print([a(n) for n in range(3, 67)]) # _Michael S. Branicky_, Aug 26 2021
%Y Cf. A332543, A332544, A082183.
%Y See A332558-A332561 for a multiplicative analog.
%K nonn
%O 3,1
%A _Scott R. Shannon_, Feb 18 2020