login
A332534
Numbers that are not of the form prime + 2^(2^k) + m! with k >= 0, m >= 0.
2
1, 2, 3, 4, 38, 68, 80, 98, 122, 128, 146, 150, 158, 164, 188, 192, 206, 212, 218, 220, 222, 224, 248, 252, 278, 290, 292, 302, 306, 308, 326, 332, 338, 344, 368, 374, 380, 398, 410, 416, 428, 432, 440, 458, 476, 488, 500, 510, 518, 522, 530, 532, 536, 542
OFFSET
1,2
LINKS
Christian Elsholtz, Florian Luca, and Stefan Planitzer, Romanov type problems, The Ramanujan Journal 47.2 (2018): 267-289.
MAPLE
q:= proc(n) local k, m;
for k from 0 while 2^(2^k)<n do
for m while 2^(2^k)+m!<n do
if isprime(n-2^(2^k)-m!) then return false fi:
od
od; true
end:
select(q, [$1..600])[]; # Alois P. Heinz, Feb 15 2020
MATHEMATICA
q[n_] := Module[{k, m}, For[k = 0, 2^(2^k) < n, k++, For[m = 1, 2^(2^k) + m! < n, m++, If[PrimeQ[n - 2^(2^k) - m!] , Return[False]]]]; True];
Select[Range[600], q] (* Jean-François Alcover, Nov 26 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 15 2020
STATUS
approved