login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the minimal distance between (0,0) and the branch of the graph of y = tan x that passes through (Pi, 0).
1

%I #4 Jun 15 2020 13:38:14

%S 2,5,5,7,0,1,5,6,1,4,2,4,1,3,5,8,5,2,6,0,1,3,6,6,3,5,4,1,9,0,6,7,7,1,

%T 3,7,9,6,9,9,9,8,9,0,8,9,7,8,1,2,2,8,7,7,1,8,6,6,8,9,0,4,7,4,9,1,3,7,

%U 0,4,0,1,1,5,5,6,7,8,6,6,2,0,0,5,1,2

%N Decimal expansion of the minimal distance between (0,0) and the branch of the graph of y = tan x that passes through (Pi, 0).

%C Let T be the branch of the graph of y = tan x that passes through (Pi,0). There is a unique point (u,v) on T that is closer to (0,0) than any other point on T. Let d = distance between (u,v) and(0,0). The first code in the Mathematica section gives

%C u = 2.319805307509200010738867057136510870483647988277... ;

%C v = -1.07556133564118881053529612226074179471679754375... ;

%C d = 2.557015614241358526013663541906771379699989089781... .

%C The second code shows (u,v) as the intersection of T and the circle centered at (0,0) with radius d.

%C The third code shows minimal distance-to-origin points on 16 branches of the tangent function.

%F u = - sin u sec^3 u.

%F v = tan u.

%F d = sqrt(u^2 + v^2).

%e minimal distance = 2.557015614241358526013663541906771379699989089781...

%t (* This code computes (x,y) coordinates and the minimal distance. *)

%t x = x /. FindRoot[FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]] == 0, {x, 2},

%t WorkingPrecision -> 150]

%t y = Tan[x]

%t d = Sqrt[x^2 + Tan[x]^2]

%t RealDigits[x][[1]]

%t RealDigits[y][[1]]

%t RealDigits[d][[1]]

%t (* _Peter J. C. Moses_, May 04 2020 *)

%t (* This code shows the two points on the graph of y = tan x and on a circle whose radius is the minimal distance. *)

%t g1 = Plot[Tan[x], {x, -2 \[Pi], 2 \[Pi]}, AspectRatio -> 1];

%t g2 = Graphics[Circle[{0, 0}, Sqrt[Tan[#]^2 + #^2] &[x /. FindRoot[

%t FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]] == 0, {x, 2},

%t WorkingPrecision -> 30]]]];

%t Show[g1, g2]

%t (* _Peter J. C. Moses_, May 04 2020 *)

%t * This code shows minimal distance points on 16 branches of the tangent function. *)

%t max = 25;

%t ptX = Table[x /. FindRoot[# == 0, {x, nn}, WorkingPrecision -> 10], {nn, 2,

%t max, Pi}] &[FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]]];

%t Show[Plot[Tan[x], {x, -#, #}, PlotRange -> {-#, #}] &[max],

%t Map[Graphics[{Red, Circle[{0, 0}, Sqrt[Tan[#]^2 + #^2]]}] &, #],

%t Map[Graphics[{PointSize[Large], Point[-{#, Tan[#]}], Point[{0, 0}],

%t Point[{#, Tan[#]}]}] &, #], AspectRatio -> Automatic,

%t ImageSize -> 600] &[ptX]

%t (* _Peter J. C. Moses_, May 05 2020 *)

%Y Cf. A332526, A332527.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Jun 15 2020