login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332335 Numbers of the form 4x^2 + 2xy + 7y^2. 1

%I

%S 0,4,7,9,13,16,19,27,28,36,37,49,52,61,63,64,67,73,76,79,81,91,97,100,

%T 103,108,112,117,124,133,139,144,148,151,163,169,171,172,175,181,189,

%U 193,196,199,208,211,217,225,241,243,244,247,252,256,259,268,271,279,292

%N Numbers of the form 4x^2 + 2xy + 7y^2.

%C Discriminant -108.

%H Charles R Greathouse IV, <a href="/A332335/b332335.txt">Table of n, a(n) for n = 1..10000</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%H Naoki Uchida, <a href="https://arxiv.org/abs/2001.11632">Integers of the Form ax^2 + bxy + cy^2</a>, arXiv:2001.11632 [math.NT], 2020.

%t Select[Range[0, 300], Resolve@Exists[{x, y}, Reduce[# == (4 x^2 + 2 x y + 7 y^2), {x, y}, Integers]] &] (* _Vincenzo Librandi_, Feb 11 2020 *)

%o (PARI) is(n)=my(h2=valuation(n,2),h3=valuation(n,3),f=factor(n>>h2/3^h3),s); if(h2==0 && h3==0, s=1, if(h2%2||h3==1, return(0)); s=0); for(i=1,#f~, if(f[i,1]%3==1,if(s && !ispower(Mod(2,f[i,1]),3), s=0), f[i,2]%2,return(0))); s==0

%o (PARI) list(lim)=my(v=List(),t); lim\=1; for(x=0,sqrtint(lim\4), t=4*x^2; for(y=(-x-sqrtint(7*lim-27*x^2))\7,(1-x+sqrtint(7*lim-27*x^2))\7, listput(v,t+2*x*y+7*y^2))); select(n->n<=lim, Set(v))

%K nonn

%O 1,2

%A _Charles R Greathouse IV_, Feb 10 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 00:04 EST 2021. Contains 349590 sequences. (Running on oeis4.)