Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jun 30 2020 14:23:22
%S 1000000007,31622776952311,1000000014783746303,
%T 31622777186062677745609,1000000022175619536498921059,
%U 31622777419814234539614807614633,1000000029567492824611472390607319403,31622777653565793061482767695810547093627,1000000036959366167363813218134876470482703123
%N a(n) = round(c^n), where c is the prime generating constant c = 31622.77671855956934118197870614288... .
%C The exact value of c = 31622.776718559569341 ... has 4096 decimal digits (cf. A335320).
%H Hugo Pfoertner, <a href="/A332308/b332308.txt">Table of n, a(n) for n = 2..222</a>
%H Simon Plouffe, <a href="https://arxiv.org/abs/2002.12137">The calculation of p(n) and pi(n)</a>, arXiv:2002.12137 [math.NT], 2020. See Appendix.
%H Simon Plouffe, <a href="http://plouffe.fr/NEW/a%20formula%20for%20primes.pdf">A formula for primes</a>
%F a(n) = round(c^n), gives primes for n = 2..388.
%e round(c^2) = 1000000007, round(c^3) = 31622776952311.
%Y Cf. A333127, A335320.
%K nonn,fini
%O 2,1
%A _Simon Plouffe_, Mar 07 2020
%E Edited by _Georg Fischer_, Jun 27 2020