%I #12 Jan 21 2024 10:57:22
%S 0,0,0,0,0,0,1,2,4,6,12,18,28,42,62,86,123,168,226,306,411,534,704,
%T 908,1165,1492,1898,2384,3011,3758,4673,5799,7168,8792,10804,13192,
%U 16053,19505,23633,28497,34367,41283,49470,59188,70675,84113,100048,118689,140533
%N Number of integer partitions of n whose first differences (assuming the last part is zero) are not unimodal.
%C A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
%H Fausto A. C. Cariboni, <a href="/A332284/b332284.txt">Table of n, a(n) for n = 0..400</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>.
%e The a(6) = 1 through a(11) = 18 partitions:
%e (2211) (331) (431) (441) (541) (551)
%e (22111) (3311) (4311) (3322) (641)
%e (22211) (32211) (3331) (4331)
%e (221111) (33111) (4411) (4421)
%e (222111) (33211) (5411)
%e (2211111) (42211) (33221)
%e (43111) (33311)
%e (222211) (44111)
%e (322111) (52211)
%e (331111) (322211)
%e (2221111) (332111)
%e (22111111) (422111)
%e (431111)
%e (2222111)
%e (3221111)
%e (3311111)
%e (22211111)
%e (221111111)
%t unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
%t Table[Length[Select[IntegerPartitions[n],!unimodQ[Differences[Append[#,0]]]&]],{n,30}]
%Y The complement is counted by A332283.
%Y The strict version is A332286.
%Y The Heinz numbers of these partitions are A332287.
%Y Non-unimodal permutations are A059204.
%Y Non-unimodal compositions are A115981.
%Y Non-unimodal normal sequences appear to be A328509.
%Y Partitions with non-unimodal run-lengths are A332281.
%Y Heinz numbers of partitions with non-unimodal run-lengths are A332282.
%Y Cf. A001523, A007052, A332280, A332285, A332288, A332579, A332638, A332639, A332640, A332642.
%K nonn
%O 0,8
%A _Gus Wiseman_, Feb 20 2020