login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer partitions of n with unimodal run-lengths.
34

%I #18 May 10 2021 03:57:08

%S 1,1,2,3,5,7,11,15,22,30,41,55,75,97,129,166,215,273,352,439,557,692,

%T 865,1066,1325,1614,1986,2413,2940,3546,4302,5152,6207,7409,8862,

%U 10523,12545,14814,17562,20690,24397,28615,33645,39297,46009,53609,62504,72581,84412

%N Number of integer partitions of n with unimodal run-lengths.

%C First differs from A000041 at a(10) = 41, A000041(10) = 42.

%C A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

%H Alois P. Heinz, <a href="/A332280/b332280.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>

%e The a(10) = 41 partitions (A = 10) are:

%e (A) (61111) (4321) (3211111)

%e (91) (55) (43111) (31111111)

%e (82) (541) (4222) (22222)

%e (811) (532) (42211) (222211)

%e (73) (5311) (421111) (2221111)

%e (721) (5221) (4111111) (22111111)

%e (7111) (52111) (3331) (211111111)

%e (64) (511111) (3322) (1111111111)

%e (631) (442) (331111)

%e (622) (4411) (32221)

%e (6211) (433) (322111)

%e Missing from this list is only (33211).

%p b:= proc(n, i, m, t) option remember; `if`(n=0, 1,

%p `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),

%p j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))

%p end:

%p a:= n-> b(n$2, 0, true):

%p seq(a(n), n=0..65); # _Alois P. Heinz_, Feb 20 2020

%t unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]

%t Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]

%t (* Second program: *)

%t b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];

%t a[n_] := b[n, n, 0, True];

%t a /@ Range[0, 65] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *)

%Y The complement is counted by A332281.

%Y Heinz numbers of these partitions are the complement of A332282.

%Y Taking 0-appended first-differences instead of run-lengths gives A332283.

%Y The normal case is A332577.

%Y The opposite version is A332638.

%Y Unimodal compositions are A001523.

%Y Unimodal normal sequences are A007052.

%Y Numbers whose unsorted prime signature is unimodal are A332288.

%Y Cf. A007052, A025065, A072706, A100883, A115981, A227038, A317086, A328509, A329398, A332284, A332285, A332294, A332578, A332579.

%K nonn

%O 0,3

%A _Gus Wiseman_, Feb 18 2020