login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k > 1 for which A048675(A332223(k)) is equal to 2*A048675(k).
7

%I #37 Feb 15 2020 21:09:08

%S 4,9,12,20,44,52,60,108,124,125,132,140,156,172,188,204,236,300,308,

%T 396,412,436,476,492,612,644,700,836,876,884,891,924,972,980,1004,

%U 1044,1092,1100,1116,1148,1188,1196,1236,1260,1268,1292,1300,1308,1372,1380,1476,1620,1628,1724,1860,1900,2140,2244,2324,2356,2444,2460,2652,2660,2700

%N Numbers k > 1 for which A048675(A332223(k)) is equal to 2*A048675(k).

%C Numbers k > 1 such that A332224(A156552(k)) = A087808(sigma(A156552(k))) is equal to 2*A048675(k) = A048675(k^2).

%C Notably, of the first 150 terms (4 .. 9996), 156 = 2^2 * 3 * 13 is the only even term that does not map to a prime, as A156552(156) = 267 = 3*89 (and sigma(267) = 360 = 4*90).

%C Although sigma(A156552(k)) = A323243(k) is a multiple of 4 for most of the terms k present in this sequence, there are exceptions, for example 840350 = A005940(1+A332445(1)) = 2^1 * 5^2 * 7^5 is one, as A048675(A332223(840350)) = 98 = 2*A048675(840350) and A323243(840350) = 2394 == 2 (mod 4).

%H Antti Karttunen, <a href="/A332225/b332225.txt">Table of n, a(n) for n = 1..150</a> (all terms < 10000, computed using Hans Havermann's factorization of A156552)

%o (PARI) for(n=2,2048,if(A048675(A332223(n))==2*A048675(n),print1(n,", ")))

%o (PARI)

%o \\ To find all terms < 10000:

%o v156552sigs = readvec("a156552.txt"); \\ Use the factorization file for A156552 prepared by Hans Havermann, available at https://oeis.org/A156552/a156552.txt

%o A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1)));

%o A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };

%o A087808(n) = if(n<1, 0, if(n%2==0, 2*A087808(n/2), A087808((n-1)/2)+1));

%o isA322225(n) = (A087808(A323243(n)) == 2*A048675(n));

%o for(n=2,10000,if(isA322225(n),print1(n,", ")));

%Y Cf. A000203, A048675, A156552, A323243, A332223, A332224, A332229, A332445, A332446.

%Y Cf. A324201 (a subsequence).

%K nonn

%O 1,1

%A _Antti Karttunen_, Feb 12 2020