Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 11 2020 08:06:59
%S 8,383,33833,3338333,333383333,33333833333,3333338333333,
%T 333333383333333,33333333833333333,3333333338333333333,
%U 333333333383333333333,33333333333833333333333,3333333333338333333333333,333333333333383333333333333,33333333333333833333333333333,3333333333333338333333333333333
%N a(n) = (10^(2*n+1)-1)/3 + 5*10^n.
%C See A183177 = {1, 7, 85, 94, 273, 356, ...} for the indices of primes.
%H Brady Haran and Simon Pampena, <a href="https://youtu.be/HPfAnX5blO0">Glitch Primes and Cyclops Numbers</a>, Numberphile video (2015).
%H Patrick De Geest, <a href="http://www.worldofnumbers.com/wing.htm#pwp383">Palindromic Wing Primes: (3)8(3)</a>, updated: June 25, 2017.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/3/33833.htm">Factorization of 33...33833...33</a>, updated Dec 11 2018.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).
%F a(n) = 3*A138148(n) + 8*10^n = A002277(2n+1) + 5*10^n.
%F G.f.: (8 - 505*x + 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
%F a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
%p A332138 := n -> (10^(2*n+1)-1)/3+5*10^n;
%t Array[ (10^(2 # + 1)-1)/3 + 5*10^# &, 15, 0]
%o (PARI) apply( {A332138(n)=10^(n*2+1)\3+5*10^n}, [0..15])
%o (Python) def A332138(n): return 10**(n*2+1)//3+5*10**n
%Y Cf. (A077792-1)/2 = A183177: indices of primes.
%Y Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
%Y Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
%Y Cf. A332118 .. A332178, A181965 (variants with different repeated digit 1, ..., 9).
%Y Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).
%K nonn,base,easy
%O 0,1
%A _M. F. Hasler_, Feb 09 2020