Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 06 2022 07:15:23
%S 0,1,4,46,1114,46246,2933074,263817646,31943268634,5009616448246,
%T 987840438629794,239217148602642046,69790939492563608554,
%U 24143849395162438623046,9772368696995766705116914,4575221153658910691872135246,2453303387149157947685779986874
%N E.g.f.: -log(2 - cosh(x)) (even powers only).
%F a(0) = 0; a(n) = A094088(n) - (1/n) * Sum_{k=1..n-1} binomial(2*n,2*k) * A094088(n-k) * k * a(k).
%F a(n) ~ (2*n)! / (n * log(2 + sqrt(3))^(2*n)). - _Vaclav Kotesovec_, Feb 07 2020
%p ptan := proc(n) option remember;
%p if irem(n, 2) = 0 then 0 else
%p add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
%p A331978 := n -> ptan(2*n - 1):
%p seq(A331978(n), n = 0..16); # _Peter Luschny_, Jun 06 2022
%t nmax = 16; Table[(CoefficientList[Series[-Log[2 - Cosh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
%Y Cf. A000111, A000182, A000629, A003703, A003704, A003707, A094088, A331611.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Feb 03 2020