login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Addends k > 0 such that the polynomial x^2 + x + k produces a record of its Hardy-Littlewood Constant.
12

%I #18 Feb 04 2020 21:24:34

%S 1,11,17,41,21377,27941,41537,55661,115721,239621,247757

%N Addends k > 0 such that the polynomial x^2 + x + k produces a record of its Hardy-Littlewood Constant.

%C The Hardy and Littlewood Conjecture F provides an estimate of the number of primes generated by a quadratic polynomial P(x) for 0 <= x <= m in the form C * Integral_{x=2..m} 1/log(x) dx), with C given by an Euler product that is a function of the fundamental discriminant of the polynomial. Cohen describes an efficient method for the computation of C.

%C The following table provides the record values of C, together with the number of primes np generated by the polynomial x^2 + x + a(n) for x <= 10^8 and the actual ratio 2*np/Integral_{x=2..10^8} 1/log(x) dx.

%C a(n) C np C from ratio

%C 1 2.24147 6456835 2.24110

%C 11 3.25944 9389795 3.25910

%C 17 4.17466 12027453 4.17460

%C 41 6.63955 19132653 6.64073

%C 21377 6.92868 19962992 6.92894

%C 27941 7.26400 20931145 7.26497

%C 41537 7.32220 21092134 7.32085

%C 55661 7.45791 21483365 7.45664

%C 115721 7.70935 22210771 7.70912

%C 239621 7.72932 22268336 7.72909

%C 247757 8.24741 23762118 8.24757

%C Jacobson and Williams found significantly larger values of C for very large addends k, e.g. C = 2*5.36708 = 10.73416 for k = 3399714628553118047.

%D Keith Conrad, Hardy-Littlewood Constants. In: Mathematical Properties of Sequences and Other Combinatorial Structures, eds. Jong-Seon No, Hong-Yeop Song, Tor Helleseth, P. Vijay Kumar, Springer New York, 2003, pages 133-154.

%H Karim Belabas, Henri Cohen, <a href="/A221712/a221712.gp.txt">Computation of the Hardy-Littlewood constant for quadratic polynomials</a>, PARI/GP script, 2020.

%H Henri Cohen, <a href="/A221712/a221712.pdf">High precision computation of Hardy-Littlewood constants</a>. [Cached pdf version, with permission]

%H Keith Conrad, <a href="https://kconrad.math.uconn.edu/articles/hlconst.pdf">Hardy-Littlewood Constants</a>, (2003).

%H Michael J. Jacobson Jr. and Hugh C. Williams, <a href="https://doi.org/10.1090/S0025-5718-02-01418-7">New Quadratic Polynomials With High Densities Of Prime Values</a>, Math. Comp., 72, 241, 499-519, 2002.

%o (PARI) \\ The function HardyLittlewood2 is provided at the Belabas, Cohen link.

%o hl2max=0; for(add=0,100,my(hl=HardyLittlewood2(n^2+n+add)); if(hl>hl2max,print1(add,", "); hl2max=hl))

%Y Cf. A002837, A007635, A014556, A116206, A331877.

%Y Cf. A221712, A221713 (Constants C including factor 1/2).

%K nonn,more,hard

%O 1,2

%A _Hugo Pfoertner_, Feb 02 2020