login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions (ordered partitions) of n^3 into distinct cubes.
1

%I #10 Nov 26 2020 11:07:59

%S 1,1,1,1,1,1,7,1,1,127,1,1,127,769,10945,15961,86641,86521,430717,

%T 4140367,4146751,93669001,1538834041,663998665,6883029151,1014140647,

%U 20591858857,121532206567,1637261351983,2981530899847,5950338797191,47072230385425

%N Number of compositions (ordered partitions) of n^3 into distinct cubes.

%H Alois P. Heinz, <a href="/A331899/b331899.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>

%F a(n) = A331845(A000578(n)).

%e a(6) = 7 because we have [216], [125, 64, 27], [125, 27, 64], [64, 125, 27], [64, 27, 125], [27, 125, 64] and [27, 64, 125].

%p b:= proc(n, i, p) option remember;

%p `if`((i*(i+1)/2)^2<n, 0, `if`(n=0, p!,

%p `if`(i^3>n, 0, b(n-i^3, i-1, p+1))+b(n, i-1, p)))

%p end:

%p a:= n-> b(n^3, n, 0):

%p seq(a(n), n=0..33); # _Alois P. Heinz_, Jan 31 2020

%t b[n_, i_, p_] := b[n, i, p] = If[(i(i+1)/2)^2 < n, 0, If[n == 0, p!, If[i^3 > n, 0, b[n - i^3, i - 1, p + 1]] + b[n, i - 1, p]]];

%t a[n_] := b[n^3, n, 0];

%t a /@ Range[0, 33] (* _Jean-François Alcover_, Nov 26 2020, after _Alois P. Heinz_ *)

%Y Cf. A000578, A030272, A259792, A290247, A298641, A298672, A298848, A331845, A331884.

%K nonn

%O 0,7

%A _Ilya Gutkovskiy_, Jan 31 2020