login
A331877
a(n) = number of primes of the form P(k) = k^2 + k + 41 for k <= 10^n as predicted by the Hardy and Littlewood Conjecture F, rounded to nearest integer. The actual number of primes is A331876(n).
3
17, 97, 586, 4133, 31965, 261022, 2207375, 19129225, 168807923, 1510681420, 13671046376, 124849864598, 1148859448601, 10639680705031, 99077207876785
OFFSET
1,1
REFERENCES
See A319906.
LINKS
G. H. Hardy and J. E. Littlewood, Some problems in "Partitio numerorum", III: On the expression of a number as a sum of primes, Acta Mathematica, Vol. 44 (1923), pp. 1-70.
Michael J. Jacobson, Jr. and Hugh C. Williams, New Quadratic Polynomials With High Densities Of Prime Values, Math. Comp., 72, 241, 499-519, 2002.
FORMULA
b(m) = round (C * Integral_{x=2..m} x/log(x) dx), with C ~= 3.319773177471..., the Hardy-Littlewood constant for k^2+k+41 (A221712); a(n) = b(10^n).
PROG
(PARI) C=3.31977317747142166532355685764988796646855; for(n=1, 15, print1(round(C*intnum(x=2, 10^n, 1/log(x))), ", "))
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Hugo Pfoertner, Jan 30 2020
STATUS
approved