login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions (ordered partitions) of n into distinct squares.
18

%I #15 Oct 29 2020 15:20:53

%S 1,1,0,0,1,2,0,0,0,1,2,0,0,2,6,0,1,2,0,0,2,6,0,0,0,3,8,0,0,8,30,0,0,0,

%T 2,6,1,2,6,24,2,8,6,0,0,8,30,0,0,7,32,24,2,8,30,120,6,24,2,6,0,8,36,

%U 24,1,34,150,0,2,12,30,24,0,2,38,150,0,12,78,144,2

%N Number of compositions (ordered partitions) of n into distinct squares.

%H Alois P. Heinz, <a href="/A331844/b331844.txt">Table of n, a(n) for n = 0..20000</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%e a(14) = 6 because we have [9,4,1], [9,1,4], [4,9,1], [4,1,9], [1,9,4] and [1,4,9].

%p b:= proc(n, i, p) option remember;

%p `if`(i*(i+1)*(2*i+1)/6<n, 0, `if`(n=0, p!,

%p `if`(i^2>n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))

%p end:

%p a:= n-> b(n, isqrt(n), 0):

%p seq(a(n), n=0..82); # _Alois P. Heinz_, Jan 30 2020

%t b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];

%t a[n_] := b[n, Sqrt[n] // Floor, 0];

%t a /@ Range[0, 82] (* _Jean-François Alcover_, Oct 29 2020, after _Alois P. Heinz_ *)

%Y Cf. A000290, A006456, A032020, A032021, A032022, A033461, A218396, A219107, A331843, A331845, A331846, A331847.

%K nonn

%O 0,6

%A _Ilya Gutkovskiy_, Jan 29 2020