login
A331830
Numbers k such that k and k + 1 are both negabinary evil numbers.
2
7, 13, 19, 27, 31, 39, 45, 51, 55, 61, 67, 75, 79, 87, 93, 99, 107, 111, 117, 123, 127, 135, 141, 147, 155, 159, 167, 173, 179, 183, 189, 195, 203, 207, 213, 219, 223, 231, 237, 243, 247, 253, 259, 267, 271, 279, 285, 291, 299, 303, 309, 315, 319, 327, 333, 339
OFFSET
1,1
LINKS
EXAMPLE
7 is a term since both 7 and 7 + 1 = 8 are negabinary evil numbers (A268272): 7 has 4 digits of 1 in its negabinary representation, 11011, 8 has 2 digits of 1 in its negabinary representation, 11000, and both 4 and 2 are even.
MATHEMATICA
negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; evilNegaBinQ[n_] := EvenQ[negaBinWt[n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[evilNegaBinQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 28 2020
STATUS
approved