Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 04 2022 19:07:58
%S 0,0,1,0,2,3,0,3,5,7,0,4,6,9,11,0,5,8,12,15,19,0,6,9,13,16,21,23,0,7,
%T 11,16,20,26,29,35,0,8,12,18,22,29,32,39,43,0,9,14,20,25,33,36,44,49,
%U 55,0,10,15,22,27,35,38,47,52,59,63,0,11,17,25,31,40,44,54,60,68,73,83
%N Triangle read by rows: T(m,n) = Sum_{0<i<m, 0<j<n, gcd{i,j}=1} 1, where m >= n >= 1.
%H M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. <a href="https://doi.org/10.1137/140978090">On the minimal teaching sets of two-dimensional threshold functions</a>. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Lemma 11.
%e Triangle begins:
%e 0,
%e 0, 1,
%e 0, 2, 3,
%e 0, 3, 5, 7,
%e 0, 4, 6, 9, 11,
%e 0, 5, 8, 12, 15, 19,
%e 0, 6, 9, 13, 16, 21, 23,
%e 0, 7, 11, 16, 20, 26, 29, 35,
%e 0, 8, 12, 18, 22, 29, 32, 39, 43,
%e 0, 9, 14, 20, 25, 33, 36, 44, 49, 55
%e ...
%p VS := proc(m,n) local a,i,j; a:=0;
%p for i from 1 to m-1 do for j from 1 to n-1 do
%p if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
%p for m from 1 to 12 do lprint([seq(VS(m,n),n=1..m)]); od:
%t Table[Sum[Boole[# == 1] # &@ GCD[i, j], {i, m - 1}, {j, n - 1}], {m, 12}, {n, m}] // Flatten (* _Michael De Vlieger_, Feb 12 2020 *)
%Y Main diagonal is A018805.
%Y A333295 is essentially the same array.
%K nonn,tabl
%O 1,5
%A _N. J. A. Sloane_, Feb 11 2020