login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331779
Coefficients arising from a 4-dissection of the Rogers-Ramanujan functions.
1
2, 1, 3, 2, 3, 0, 2, 0, 2, 0, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 0, 2, 1, 2, 0, 3, 1, 3, 1, 2, 0, 2, 1, 3, 2, 3, 0, 2, 0, 2, 0, 3, 2, 3, 1, 2, 0, 2, 1, 3, 1, 3, 0, 2, 1, 2, 0, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 0, 2, 0, 2, 0, 3, 2, 3, 1, 2, 0
OFFSET
1,1
COMMENTS
Periodic with period 80.
From G. C. Greubel, Feb 09 2020: (Start)
a(n) = 0 if n = 0, +-6, +-8, +-10, +-22, +-26, +-32, +-38, 40 (mod 80).
a(n) = 1 if n = +-2, +-12, +-14, +-16, +-18, +-20, +-24, +-28, +-30, +-34 (mod 80).
a(n) = 2 if n = +-1, +-4, +-7, +-9, +-15, +-17, +-23, +-25, +-31, +-33, +-36, +-39 (mod 80).
a(n) = 3 if n = +-3, +-5, +-11, +-13, +-19, +-21, +-27, +-29, +-35, +-37 (mod 80). (End)
LINKS
Michael D. Hirschhorn, On the 2-and 4-dissections of the Rogers-Ramanujan functions, The Ramanujan Journal 40.2 (2016): 227-235. See Eqs. 14 and 15.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1).
FORMULA
From Colin Barker, Feb 09 2020: (Start)
G.f.: x*(1 - x + x^2)*(2 + 3*x + 4*x^2 + 3*x^3 + 4*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 7*x^8 + 5*x^9 + 6*x^10 + 4*x^11 + 8*x^12 + 6*x^13 + 8*x^14 + 6*x^15 + 8*x^16 + 4*x^17 + 6*x^18 + 5*x^19 + 7*x^20 + 3*x^21 + 3*x^22 + 2*x^23 + 4*x^24 + 3*x^25 + 4*x^26 + 3*x^27 + 2*x^28) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x^4)*(1 + x + x^2 + x^3 + x^4)*(1 - x^2 + x^4 - x^6 + x^8)*(1 + x^8)).
a(n) = -a(n-4) - a(n-8) - a(n-12) + a(n-20) + a(n-24) + a(n-28) + a(n-32) for n>32.
(End)
Product_{k>=1} 1/(1-q^k)^a(k) = ( (q^6, q^8, q^10, q^16; q^16)_{oo} * (q^2, q^6, q^8, q^10, q^12, q^14, q^18, q^20; q^20)_{oo} )/( (q; q)_{oo}^2 * (q^3, q^5; q^8)_{oo} ), where (a; q)_{oo} is the q-Pochhammer symbol and (a, b; q)_{oo} = (q;a)_{oo}*(b;q)_{oo} (See Eqs (5) and (13) of Hirschhorn ref.). - G. C. Greubel, Feb 10 2020
MATHEMATICA
g[x_]:= (2 +3*x +4*x^2 +3*x^3 +4*x^4 +2*x^5 +3*x^6 +3*x^7 +7*x^8 +5*x^9 +6*x^10 +4*x^11 +8*x^12 +6*x^13 +8*x^14 +6*x^15 +8*x^16 +4*x^17 +6*x^18 +5*x^19 +7*x^20 +3*x^21 +3*x^22 +2*x^23 +4*x^24 +3*x^25 +4*x^26 +3*x^27 +2*x^28); CoefficientList[Series[x*(1+x^3)*(1-x^4)*g[x]/((1+x)*(1-x^16)*(1-x^20)), {x, 0, 100}], x] (* G. C. Greubel, Feb 10 2020 *)
PROG
(PARI) Vec(x*(1 - x + x^2)*(2 + 3*x + 4*x^2 + 3*x^3 + 4*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 7*x^8 + 5*x^9 + 6*x^10 + 4*x^11 + 8*x^12 + 6*x^13 + 8*x^14 + 6*x^15 + 8*x^16 + 4*x^17 + 6*x^18 + 5*x^19 + 7*x^20 + 3*x^21 + 3*x^22 + 2*x^23 + 4*x^24 + 3*x^25 + 4*x^26 + 3*x^27 + 2*x^28) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x^4)*(1 + x + x^2 + x^3 + x^4)*(1 - x^2 + x^4 - x^6 + x^8)*(1 + x^8)) + O(x^40)) \\ Colin Barker, Feb 10 2020
CROSSREFS
Sequence in context: A144154 A350768 A054710 * A243556 A048233 A287730
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 09 2020
STATUS
approved