Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 04 2020 21:44:50
%S 1,1,2,1,3,4,5,1,3,6,7,8,7,9,10,1,3,11,7,6,12,13,14,15,7,13,16,17,14,
%T 18,19,1,11,6,7,3,12,13,14,20,12,21,22,23,24,25,26,8,7,7,27,13,22,28,
%U 29,30,14,25,29,31,26,32,33,1,3,34,7,6,35,13,14,11,12,36,22,23,22,37,26,6,12,36,22,38,39,40,41,23,22,42,43,44,45,46,47,15,7,7,27,7
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j) and A278222(i) = A278222(j) for all i, j.
%C Restricted growth sequence transform of the ordered pair [A009194(n), A278222(n)].
%C For all i, j:
%C A331746(i) = A331746(j) => a(i) = a(j).
%H Antti Karttunen, <a href="/A331747/b331747.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(2^n) = 1 for all n >= 0.
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A009194(n) = gcd(n, sigma(n));
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1)));
%o t };
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o A278222(n) = A046523(A005940(1+n));
%o Aux331747(n) = [A009194(n),A278222(n)];
%o v331747 = rgs_transform(vector(up_to, n, Aux331747(n)));
%o A331747(n) = v331747[n];
%Y Cf. A009194, A278222.
%Y Cf. also A324400, A286622, A318310, A318311, A324389, A331744, A331745, A331746.
%K nonn
%O 1,3
%A _Antti Karttunen_, Feb 04 2020