login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binary XOR of squares of divisors of n.
1

%I #16 May 03 2023 16:15:54

%S 1,5,8,21,24,40,48,85,89,120,120,168,168,240,240,341,288,317,360,504,

%T 384,408,528,680,617,520,640,1008,840,816,960,1365,1072,1440,1248,

%U 1197,1368,1224,1360,2040,1680,1920,1848,1560,1864,2640,2208,2728,2385,3021

%N Binary XOR of squares of divisors of n.

%H Rémy Sigrist, <a href="/A331700/b331700.txt">Table of n, a(n) for n = 1..8192</a>

%H Rémy Sigrist, <a href="/A331700/a331700.png">Colored scatterplot of the first 2^18 terms</a> (where the color is function of A007814(n))

%e For n = 6:

%e - the divisors of 6 are 1, 2, 3 and 6,

%e - so a(6) = 1 XOR 4 XOR 9 XOR 36 = 40.

%t Table[BitXor@@(Divisors[n]^2),{n,50}] (* _Harvey P. Dale_, May 03 2023 *)

%o (PARI) a(n) = my (s=0); fordiv (n, d, s=bitxor(s, d^2)); s

%o (Python)

%o from functools import reduce

%o from operator import xor

%o from sympy import divisors

%o def A331700(n): return reduce(xor,(d**2 for d in divisors(n,generator=True))) # _Chai Wah Wu_, Jul 01 2022

%Y Cf. A001157, A007814, A178910, A295901.

%K nonn,base

%O 1,2

%A _Rémy Sigrist_, Jan 25 2020