login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime factors of gcd(A122111(n), A241909(n)).
4

%I #13 Jul 27 2024 23:17:04

%S 0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,1,1,1,2,1,1,2,1,

%T 2,1,1,1,2,1,1,2,1,1,2,1,1,1,1,2,2,1,1,1,2,1,2,1,1,1,1,1,2,1,2,2,1,1,

%U 2,2,1,1,1,1,2,1,2,2,1,1,1,1,1,1,2,1,2,1,1,1,2,1,2,1,2,1,1,2,2,1,1,2,1,1,3

%N Number of distinct prime factors of gcd(A122111(n), A241909(n)).

%H Antti Karttunen, <a href="/A331596/b331596.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = A001221(A331596(n)) = A001221(gcd(A122111(n), A241909(n))).

%F a(n) = A001222(A331597(n)).

%t Array[PrimeNu@ If[# == 1, 1, GCD @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 105] (* _Michael De Vlieger_, Jan 24 2020, after _JungHwan Min_ at A122111. *)

%o (PARI) A331596(n) = omega(gcd(A122111(n), A241909(n)));

%Y Cf. A001221, A331596, A331597.

%K nonn

%O 1,15

%A _Antti Karttunen_, Jan 22 2020