login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of distinct nonzero rows with column sums n and columns in nonincreasing lexicographic order.
11

%I #12 Jan 26 2020 16:27:59

%S 1,1,1,1,1,1,1,2,1,1,1,4,7,3,1,1,8,59,45,3,1,1,16,701,1987,271,5,1,1,

%T 32,10460,190379,73567,1244,11,1,1,64,190816,30474159,58055460,

%U 2451082,7289,13,1,1,128,4098997,7287577611,100171963518,16557581754,75511809,40841,19,1

%N Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of distinct nonzero rows with column sums n and columns in nonincreasing lexicographic order.

%C The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.

%H Andrew Howroyd, <a href="/A331572/b331572.txt">Table of n, a(n) for n = 0..209</a>

%F A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A331568(n, j)/k!.

%F A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331570(n, j).

%F A331713(n) = Sum_{d|n} A(n/d, d).

%e Array begins:

%e ==========================================================

%e n\k | 0 1 2 3 4 5

%e ----+-----------------------------------------------------

%e 0 | 1 1 1 1 1 1 ...

%e 1 | 1 1 2 4 8 16 ...

%e 2 | 1 1 7 59 701 10460 ...

%e 3 | 1 3 45 1987 190379 30474159 ...

%e 4 | 1 3 271 73567 58055460 100171963518 ...

%e 5 | 1 5 1244 2451082 16557581754 311419969572540 ...

%e 6 | 1 11 7289 75511809 4388702900099 ...

%e ...

%e The A(2,2) = 7 matrices are:

%e [1 1] [1 0] [1 0] [2 1] [2 0] [1 0] [2 2]

%e [1 0] [1 1] [0 1] [0 1] [0 2] [1 2]

%e [0 1] [0 1] [1 1]

%o (PARI)

%o EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

%o D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n] + k - 1, k)/prod(i=1, #v, i^v[i]*v[i]!)}

%o T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

%Y Rows n=0..3 are A000012, A011782, A331709, A331710.

%Y Columns k=0..3 are A000012, A032020, A331711, A331712.

%Y Cf. A331315, A331568, A331569, A331570, A331571, A331713.

%K nonn,tabl

%O 0,8

%A _Andrew Howroyd_, Jan 21 2020