login
Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of distinct nonzero rows with column sums n.
10

%I #11 Jan 25 2020 17:55:19

%S 1,1,1,1,1,1,1,3,1,1,1,13,13,3,1,1,75,313,87,3,1,1,541,14797,11655,

%T 539,5,1,1,4683,1095601,4498191,439779,2483,11,1,1,47293,119621653,

%U 3611504823,1390686419,14699033,14567,13,1,1,545835,17943752233,5192498314767,12006713338683,397293740555,453027131,81669,19,1

%N Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of distinct nonzero rows with column sums n.

%H Andrew Howroyd, <a href="/A331568/b331568.txt">Table of n, a(n) for n = 0..209</a>

%F A331648(n) = Sum_{d|n} A(n/d, d).

%e Array begins:

%e ================================================================

%e n\k | 0 1 2 3 4 5

%e ----+-----------------------------------------------------------

%e 0 | 1 1 1 1 1 1 ...

%e 1 | 1 1 3 13 75 541 ...

%e 2 | 1 1 13 313 14797 1095601 ...

%e 3 | 1 3 87 11655 4498191 3611504823 ...

%e 4 | 1 3 539 439779 1390686419 12006713338683 ...

%e 5 | 1 5 2483 14699033 397293740555 37366422896708825 ...

%e 6 | 1 11 14567 453027131 105326151279287 ...

%e ...

%e The A(2,2) = 13 matrices are:

%e [1 1] [1 1] [1 0] [1 0] [0 1] [0 1]

%e [1 0] [0 1] [1 1] [0 1] [1 1] [1 0]

%e [0 1] [1 0] [0 1] [1 1] [1 0] [1 1]

%e .

%e [2 1] [2 0] [1 2] [1 0] [0 2] [0 1] [2 2]

%e [0 1] [0 2] [1 0] [1 2] [2 0] [2 1]

%o (PARI)

%o EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

%o D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); EulerT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}

%o T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

%Y Rows n=0..3 are A000012, A000670, A331644, A331645.

%Y Columns k=0..3 are A000012, A032020, A331646, A331647.

%Y Cf. A219585, A331315, A331567, A331570, A331572, A331648.

%K nonn,tabl

%O 0,8

%A _Andrew Howroyd_, Jan 21 2020