OFFSET
0,8
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..209
FORMULA
A(n,k) = 0 for k > 0, n > 2^(k-1).
A(2^(k-1), k) = (2^k-1)! for k > 0.
A331643(n) = Sum_{d|n} A(n/d, d).
EXAMPLE
Array begins:
===============================================================
n\k | 0 1 2 3 4 5 6
----+----------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 3 13 75 541 4683 ...
2 | 1 0 6 120 6174 449520 49686726 ...
3 | 1 0 0 1104 413088 329520720 491236986720 ...
4 | 1 0 0 5040 18481080 179438982360 3785623968170400 ...
5 | 1 0 0 0 522481680 70302503250720 ...
6 | 1 0 0 0 7875584640 ...
...
The A(2,2) = 6 matrices are:
[1 1] [1 1] [1 0] [1 0] [0 1] [0 1]
[1 0] [0 1] [1 1] [0 1] [1 1] [1 0]
[0 1] [1 0] [0 1] [1 1] [1 0] [1 1]
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 20 2020
STATUS
approved