login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331567
Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of distinct nonzero rows with n ones in every column.
9
1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 1, 13, 6, 0, 1, 1, 75, 120, 0, 0, 1, 1, 541, 6174, 1104, 0, 0, 1, 1, 4683, 449520, 413088, 5040, 0, 0, 1, 1, 47293, 49686726, 329520720, 18481080, 0, 0, 0, 1, 1, 545835, 7455901320, 491236986720, 179438982360, 522481680, 0, 0, 0, 1
OFFSET
0,8
LINKS
FORMULA
A(n,k) = 0 for k > 0, n > 2^(k-1).
A(2^(k-1), k) = (2^k-1)! for k > 0.
A331643(n) = Sum_{d|n} A(n/d, d).
EXAMPLE
Array begins:
===============================================================
n\k | 0 1 2 3 4 5 6
----+----------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 3 13 75 541 4683 ...
2 | 1 0 6 120 6174 449520 49686726 ...
3 | 1 0 0 1104 413088 329520720 491236986720 ...
4 | 1 0 0 5040 18481080 179438982360 3785623968170400 ...
5 | 1 0 0 0 522481680 70302503250720 ...
6 | 1 0 0 0 7875584640 ...
...
The A(2,2) = 6 matrices are:
[1 1] [1 1] [1 0] [1 0] [0 1] [0 1]
[1 0] [0 1] [1 1] [0 1] [1 1] [1 0]
[0 1] [1 0] [0 1] [1 1] [1 0] [1 1]
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }
CROSSREFS
Rows n=1..3 are A000670, A331640, A331641.
Column k=5 is A331642.
Sequence in context: A126308 A370040 A094923 * A303301 A160499 A329272
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 20 2020
STATUS
approved