login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled graphs with n nodes and floor(n*(n-1)/4) edges.
1

%I #25 Mar 24 2020 02:53:53

%S 1,1,3,20,252,6435,352716,40116600,9075135300,4116715363800,

%T 3824345300380220,7219428434016265740,27217014869199032015600,

%U 205397724721029574666088520,3136262529306125724764953838760

%N Number of labeled graphs with n nodes and floor(n*(n-1)/4) edges.

%C The expected number of edges of a random graph is n*(n - 1)/4. [See the Cieslik reference.]

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 109.

%H Dietmar Cieslik, <a href="https://math-inf.uni-greifswald.de/storages/uni-greifswald/fakultaet/mnf/mathinf/boldt/pdf-dateien/cieslik-counting-graphs.pdf">Counting Networks</a>.

%H Carlos R. Lucatero, <a href="https://www.intechopen.com/online-first/combinatorial-enumeration-of-graphs">Combinatorial Enumeration of Graphs</a>.

%F a(n) = binomial(binomial(n,2), floor(n*(n-1)/4)).

%e a(4) is 20 because for n=4, floor(n*(n-1)/4) = 3, and there are A000717(4) = 3 graphs with four points and three edges. See figure below or J. Riordan reference.

%e The non-isomorphic graphs with four nodes and three edges along with the corresponding number of labeled graphs are as follows:

%e .

%e *--* *--* *

%e | / | |

%e |/ * | |

%e * *--* *--*--*

%e 4 12 4

%o (PARI) a(n) = binomial(binomial(n,2), n*(n-1)\4);

%Y Cf. A000717 ("unlabeled case"), A084546.

%K nonn

%O 1,3

%A _Washington Bomfim_, Jan 18 2020