login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers p such that p^2 divides 31^(p-1) - 1.
2

%I #29 May 05 2021 01:51:26

%S 7,79,6451,2806861

%N Prime numbers p such that p^2 divides 31^(p-1) - 1.

%H Richard Fischer, <a href="http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort.txt">Fermatquotienten von 2 bis 1052</a>, Dec 19 2019.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wieferich_prime">Wieferich prime</a>

%t Select[Range[3*10^6], PrimeQ[#] && PowerMod[31, # - 1, #^2] == 1 &] (* _Amiram Eldar_, May 05 2021 *)

%o (PARI) forprime(p=2, 1e8, if(Mod(31, p^2)^(p-1)==1, print1(p", ")))

%Y Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A123693 (b=7), A128667 (b=13), A128668 (b=17), A090968 (b=19), A128669 (b=23), this sequence (b=31), A331426 (b=37), A331427 (b=41).

%Y Cf. A039951.

%K nonn,more

%O 1,1

%A _Seiichi Manyama_, Jan 16 2020