login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unoriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
11

%I #16 Mar 09 2024 12:02:25

%S 1,49127,740360358,733776248840,155261523065875,12340612271439081,

%T 498926608780739307,12298018390569089088,207726683413584244680,

%U 2604177120221402303875,25650403577338260144611,207023317470352041578712

%N Number of unoriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.

%C A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. Two unoriented colorings are the same if congruent; chiral pairs are counted as one. Also the number of unoriented colorings of the square faces of a tesseract {4,3,3} with n available colors.

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).

%F a(n) = (48*n^3 + 64*n^4 + 44*n^6 + 84*n^7 + 56*n^8 + 12*n^9 + 5*n^12 +

%F 36*n^13 + 18*n^14 + 12*n^15 + 4*n^18 + n^24) / 384.

%F a(n) = C(n,1) + 49125*C(n, 2) + 740212980*C(n, 3) + 730815102166*C(n, 4) + 151600044933990*C(n, 5) + 11420034970306170*C(n, 6) + 415777158607920585*C(n, 7) + 8643499341510394200*C(n, 8) + 113988734942055623055*C(n, 9) + 1023002477284840979850*C(n, 10) + 6559265715033958749900*C(n, 11) + 31097943476763200314200*C(n, 12) + 111710751446923209781200*C(n, 13) + 309231173588248964052000*C(n, 14) + 666846649590586048584000*C(n, 15) + 1126625898539640346848000*C(n, 16) + 1492173541849975272288000*C(n, 17) + 1541987122059614438208000*C(n, 18) + 1229356526029003532160000*C(n, 19) + 741102367008078915840000*C(n, 20) + 326583680209195368960000*C(n, 21) + 99234043419574103040000*C(n, 22) + 18581137031073576960000*C(n, 23) + 1615751046180311040000*C(n, 24), where the coefficient of C(n,k) is the number of colorings using exactly k colors.

%F a(n) = A331354(n) - A331356(n) = (A331354(n) + A331357(n)) / 2 = A331356(n) + A331357(n).

%t Table[(48 n^3 + 64 n^4 + 44 n^6 + 84 n^7 + 56 n^8 + 12 n^9 + 5 n^12 +

%t 36 n^13 + 18 n^14 + 12 n^15 + 4 n^18 + n^24)/384, {n, 1, 25}]

%Y Cf. A331354 (oriented), A331356 (chiral), A331357 (achiral).

%Y Other polychora: A063843 (5-cell), A331359 (8-cell), A338953 (24-cell), A338965 (120-cell, 600-cell).

%Y Row 4 of A337412 (orthoplex edges, orthotope ridges) and A337888 (orthotope faces, orthoplex peaks).

%K nonn,easy

%O 1,2

%A _Robert A. Russell_, Jan 14 2020