login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations w in S_n that form Boolean intervals [s, w] in the Bruhat order for every simple reflection s in the support of w.
1

%I #33 Sep 08 2022 08:46:25

%S 1,2,6,15,37,93,238,616,1604,4189,10955,28667,75036,196430,514242,

%T 1346283,3524593,9227481,24157834,63246004,165580160,433494457,

%U 1134903191,2971215095,7778742072,20365011098,53316291198,139583862471,365435296189,956722026069

%N Number of permutations w in S_n that form Boolean intervals [s, w] in the Bruhat order for every simple reflection s in the support of w.

%H Colin Barker, <a href="/A331347/b331347.txt">Table of n, a(n) for n = 1..1000</a>

%H B. E. Tenner, <a href="https://arxiv.org/abs/2001.05011">Interval structures in the Bruhat and weak orders</a>, arXiv:2001.05011 [math.CO], 2020.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,5,-1).

%F a(n) = Fibonacci(2n-1) + n - 2 = A001519(n) + n - 2.

%F From _Colin Barker_, Jan 14 2020: (Start)

%F G.f.: x*(1 - 3*x + 4*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - 3*x + x^2)).

%F a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4) for n>5.

%F (End)

%F E.g.f.: 1 + exp((1/2)*(3-sqrt(5))*x)*(3 + sqrt(5) + 2*exp(sqrt(5)*x))/(5 + sqrt(5)) + exp(x)*(x - 2). - _Stefano Spezia_, Jan 15 2020

%e a(4) = 15 because the permutations with this property in S_4 are all permutations of length < 4.

%t Join[{1},Table[Fibonacci[2n-1]+n-2,{n,2,30}]] (* or *) LinearRecurrence[ {5,-8,5,-1},{1,2,6,15,37},30] (* _Harvey P. Dale_, Feb 21 2020 *)

%o (PARI) Vec(x*(1 - 3*x + 4*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - 3*x + x^2)) + O(x^30)) \\ _Colin Barker_, Jan 14 2020

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-3*x+4*x^2-4*x^3+x^4)/((1-x)^2*(1-3*x+x^2)))); // _Marius A. Burtea_, Jan 15 2020

%Y Cf. A001519.

%K easy,nonn

%O 1,2

%A _Bridget Tenner_, Jan 14 2020