Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 18 2020 18:23:47
%S 1,2,3,4,5,6,3,7,8,9,5,10,3,11,12,13,5,14,3,15,16,17,5,18,19,20,21,22,
%T 3,23,5,24,25,26,27,28,3,29,30,31,5,32,3,33,34,35,5,36,37,38,39,40,3,
%U 41,42,43,44,45,5,46,3,47,48,49,50,51,5,52,53,54,3,55,5,56,57,58,59,60,3,61,62,63,5,64,65,66,67,68,3,69,70,71,72,73,74,75,5,76,77,78,3,79,5,80,81
%N For n <= 4, a(n) = n, for n > 4, if n is prime, a(n) = 3 + 2*A000035(A000720(n)), otherwise a(n) = 3 + n - A000720(n).
%C Restricted growth sequence transform of function f defined as: f(n) = A071986(n) when n is an odd prime, otherwise f(n) = -n.
%C For all i, j:
%C a(i) = a(j) => A305801(i) = A305801(j),
%C a(i) = a(j) => A329647(i) = A329647(j),
%C a(i) = a(j) => A329903(i) = A329903(j).
%H Antti Karttunen, <a href="/A331304/b331304.txt">Table of n, a(n) for n = 1..100000</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F For n <= 4, a(n) = n, for n > 4, if n is prime, a(n) = 3 + 2*A000035(A000720(n)), otherwise a(n) = 3 + n - A000720(n).
%o (PARI) A331304(n) = if(n<=4,n,if(isprime(n),3+2*(primepi(n)%2),3+n-primepi(n)));
%Y Cf. A000720, A071986, A305801, A329647, A329903.
%Y Cf. also A319704.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jan 18 2020