Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #42 Apr 26 2020 15:17:17
%S 1,15,117,891,6777,51543,392013,2981475,22675761,172461663,1311666021,
%T 9975943179,75872547369,577052549415,4388802753213,33379264377459,
%U 253867706760033,1930803860947887,14684827767302997,111686210555580315,849435201142733529,6460422977475127287
%N Number of green nodes in n-th power graph W exponentiation of a cycle graph with 7 blue nodes and one green node.
%H Colin Barker, <a href="/A331211/b331211.txt">Table of n, a(n) for n = 0..1000</a>
%H Thezebraherd user, <a href="https://youtu.be/o7_L_Mo-xpU">Graph W multiplication</a>, Youtube video.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-3).
%F a(n) = a(n-1) + 2*b(n-1), b(n) = 2*a(n-1) + 7*b(n-1) with a(0) = 1 and b(0) = 7 where b(n) = A332936(n).
%F From _Colin Barker_, Mar 03 2020: (Start)
%F G.f.: (1 + 7*x) / (1 - 8*x + 3*x^2).
%F a(n) = 8*a(n-1) - 3*a(n-2) for n>1.
%F (End)
%F From _Stefano Spezia_, Mar 03 2020: (Start)
%F a(n) = ((4 - sqrt(13))^n*(-11 + sqrt(13)) + (4 + sqrt(13))^n*(11 + sqrt(13)))/(2*sqrt(13)).
%F E.g.f.: exp(4*x)*cosh(sqrt(13)*x) + (11*exp(4*x)*sinh(sqrt(13)*x))/sqrt(13).
%F (End)
%e For n = 2 take g(1)=15 and b(1)=51. Multiply b(1) by 2 to get 102 add 15 to get 117.
%e For n = 3 take g(2)=117 and b(2)=387. Multiply b(2) by 2 to get 774 add 177 to get 891.
%o (Python)
%o g=1
%o b=7
%o sg=0
%o sb=0
%o bl=[]
%o gl=[]
%o for int in range(1,20):
%o sg=g*1+b*2
%o sb=b*7+g*2
%o g=sg
%o b=sb
%o gl.append(g)
%o bl.append(b)
%o print(gl)
%o (PARI) Vec((1 + 7*x) / (1 - 8*x + 3*x^2) + O(x^20)) \\ _Colin Barker_, Mar 03 2020
%Y Cf. A332936 (number of blue nodes).
%Y Similar sequences with a cycle size 3..6 are: A007483, A048876, A189274(n+1), A054490.
%K nonn,easy
%O 0,2
%A _George Strand Vajagich_, Mar 01 2020
%E a(14)-a(21) from _Stefano Spezia_, Mar 03 2020
%E Typo in a(14) fixed by _Colin Barker_, Apr 26 2020