login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n).
9

%I #11 May 28 2021 00:56:07

%S 1,1,1,2,1,1,1,3,2,1,1,4,1,1,1,5,1,4,1,4,1,1,1,7,2,1,3,4,1,1,1,7,1,1,

%T 1,9,1,1,1,7,1,1,1,4,4,1,1,12,2,4,1,4,1,7,1,7,1,1,1,11,1,1,4,11,1,1,1,

%U 4,1,1,1,16,1,1,4,4,1,1,1,12,5,1,1,11,1,1,1,7,1,11,1,4,1,1,1,19,1,4,4,9,1,1,1,7,1

%N Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n).

%C A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.

%H Antti Karttunen, <a href="/A331023/b331023.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F a(2^n) = A330994(n).

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Numerator

%o (PARI)

%o A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));

%o A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A045778(n/d, d-1))));

%o A331023(n) = numerator(A001055(n)/A045778(n)); \\ _Antti Karttunen_, May 27 2021

%Y Positions of 1's are A005117.

%Y Positions of 2's appear to be A001248.

%Y The denominators are A331024.

%Y The rounded quotients are A331048.

%Y The same for integer partitions is A330994.

%Y Cf. A001055, A001222, A002033, A045778, A045779, A045780, A045782, A045783, A325755, A326028, A326622, A328966, A330972, A330977, A330991.

%K nonn,frac

%O 1,4

%A _Gus Wiseman_, Jan 08 2020

%E More terms from _Antti Karttunen_, May 27 2021