login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331020
Values k for successive maximal records of the function A defined as A(prime(k)) = log(prime(k)) - prime(k)/Pi(prime(k)) where Pi(prime(k)) is number of primes <= prime(k).
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 18, 21, 27, 28, 29, 30, 46, 61, 91, 121, 180, 184, 185, 186, 188, 189, 214, 216, 217, 257, 258, 775, 832, 1217, 1225, 1227, 1269, 1270, 1846, 1847, 2682, 2683, 2684, 2685, 2686, 2688
OFFSET
1,2
COMMENTS
This sequence is finite and complete.
Chebyshev 1852, goes on to conclude that if we put Pi(x) = x/(log(x) - A(x)) has a limit as x -> +infinity, then a limit must be 1, not 1.08366 (A228211), as Legendre incorrectly conjectured in 1808.
R. Farhadian & R. Jakimczuk 2018 prove again that the function A tends to 1 when n tends to infinity.
A(prime(2688)) = A(24137) = -24137/2688 + log(24137) = 1.11196252139...
A(n) <= -(24137/2688) + log(24137) for all positive integers n.
LINKS
P. L. Chebyshev, Sur la totalité des nombres premiers inférieurs à une limite donnée, J. math. pures appl. 17, 1852 (in French).
R. Farhadian & R. Jakimczuk, One more disproof for the Legendre's conjecture regarding the prime counting function Pi(x), Notes on Number Theory and Discrete Mathematics, Vol. 24, 2018, No. 3, 84-91.
Eric Weisstein's World of Mathematics, Legendre's Constant.
EXAMPLE
n | a(n) | A(prime(a(n)))
---+------+---------------
1 | 1 | -1.306852819
2 | 2 | -0.401387711
3 | 3 | -0.057228754
4 | 4 | 0.195910149
5 | 5 | 0.197895272
6 | 6 | 0.398282690
7 | 7 | 0.404641915
8 | 8 | 0.569438979
9 | 9 | 0.579938660
10 | 11 | 0.615805386
MATHEMATICA
max = -2; aa = {}; Do[kk = Log[Prime[n]] - Prime[n]/PrimePi[Prime[n]];
If[kk > max, max = kk; AppendTo[aa, n]], {n, 1, 2700}]; aa
CROSSREFS
Sequence in context: A320320 A263364 A296242 * A085429 A202940 A082324
KEYWORD
nonn,fini,full,changed
AUTHOR
Artur Jasinski, Jan 07 2020
STATUS
approved