%I #4 Jan 09 2020 18:13:39
%S 1,1,1,2,2,3,4,1,3,4,5,3,15,18,22,27,32,38,46,27,64,19,89,104,122,71,
%T 55,96,111,256,74,170,130,64,256,195,668,760,864,982,53,60,713,1610,
%U 1816,1024,384,185,970,3264,1829,4097,4582,5120,5718,3189,7108,2639
%N Denominator P(n)/Q(n) = A000041(n)/A000009(n).
%C An integer partition of n is a finite, nonincreasing sequence of positive integers (parts) summing to n. It is strict if the parts are all different. Integer partitions and strict integer partitions are counted by A000041 and A000009 respectively.
%C Conjecture: The only 1's occur at n = 0, 1, 2, 7.
%F A330994/A330995 = A000041/A000009.
%t Table[PartitionsP[n]/PartitionsQ[n],{n,0,100}]//Denominator
%Y The numerators are A330994.
%Y The rounded quotients are A330996.
%Y The same for factorizations is A331024.
%Y Cf. A000009, A000041, A001055, A003238, A005117, A035359, A045778, A046063, A331022.
%K nonn,frac
%O 0,4
%A _Gus Wiseman_, Jan 08 2020