login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1.
38

%I #9 Jan 07 2020 09:08:25

%S 1,4,8,12,16,24,36,48,60,72,96,120,128,144,180,192,216,240,256,288,

%T 360,384,420,432,480,576,720,768,840,864,900,960,1024,1080,1152,1260,

%U 1440,1680,1728,1800,1920,2048,2160,2304,2520,2592,2880,3072,3360,3456,3600

%N Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1.

%C This is the sorted list of positions of first appearances in A001055 of each element of the range (A045782).

%H R. E. Canfield, P. Erdős and C. Pomerance, <a href="http://math.dartmouth.edu/~carlp/PDF/paper39.pdf">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28.

%e Factorizations of n for n = 4, 8, 12, 16, 24, 36, 48, 60:

%e 4 8 12 16 24 36 48 60

%e 2*2 2*4 2*6 2*8 3*8 4*9 6*8 2*30

%e 2*2*2 3*4 4*4 4*6 6*6 2*24 3*20

%e 2*2*3 2*2*4 2*12 2*18 3*16 4*15

%e 2*2*2*2 2*2*6 3*12 4*12 5*12

%e 2*3*4 2*2*9 2*3*8 6*10

%e 2*2*2*3 2*3*6 2*4*6 2*5*6

%e 3*3*4 3*4*4 3*4*5

%e 2*2*3*3 2*2*12 2*2*15

%e 2*2*2*6 2*3*10

%e 2*2*3*4 2*2*3*5

%e 2*2*2*2*3

%t nn=1000;

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t nds=Length/@Array[facs,nn];

%t Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

%Y All terms belong to A025487

%Y Includes all highly factorable numbers A033833.

%Y Factorizations are A001055, with image A045782.

%Y The least number with A045782(n) factorizations is A045783(n).

%Y The least number with n factorizations is A330973(n).

%Y The strict version is A330997.

%Y Cf. A001222, A002033, A007716, A045778, A318284, A325238, A330935, A330936, A330976, A330977, A330989, A330991, A330992.

%K nonn

%O 1,2

%A _Gus Wiseman_, Jan 06 2020