login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the areas of all Heronian triangles with perimeter A051518(n).
4

%I #15 Feb 01 2021 21:21:07

%S 6,12,12,24,30,72,198,60,126,66,288,180,360,84,330,648,132,204,420,

%T 876,114,156,840,1764,264,1350,1632,2016,1830,624,3816,330,2604,456,

%U 2280,2352,4800,780,4422,1224,2940,7068,5430,912,2310,3744,5520,9144,984,8736,1020

%N Sum of the areas of all Heronian triangles with perimeter A051518(n).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Heronian_triangle">Heronian triangle</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>

%F a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)), where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - _Wesley Ivan Hurt_, May 12 2020

%e a(1) = 6; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its area is 3*4/2 = 6.

%e a(6) = 72; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum of their areas 24 + 48 = 72.

%Y Cf. A051516, A051518, A070138, A096468, A298079, A298614, A305717.

%Y Cf. A330912, A330915, A330916.

%K nonn

%O 1,1

%A _Wesley Ivan Hurt_, May 02 2020