login
Numbers whose set of divisors contains a Pythagorean quadruple.
5

%I #38 Nov 16 2020 23:33:30

%S 42,72,84,126,144,156,168,198,210,216,252,288,294,312,330,336,342,360,

%T 378,396,420,432,462,468,504,546,570,576,588,594,624,630,648,660,672,

%U 684,714,720,756,780,792,798,840,864,882,900,924,930,936,966,990,1008,1026

%N Numbers whose set of divisors contains a Pythagorean quadruple.

%C A Pythagorean quadruple (x, y, z, m) is a set of positive integers that satisfy x^2 + y^2 + z^2 = m^2.

%C The corresponding number of quadruples of the sequence is 1, 1, 2, 2, 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 4, 1, 2, 3, 2, 7, 4, ... (see the sequence A330894).

%C It is interesting to note that each set of divisors of a(n) contains m primitive Pythagorean quadruples for some n, m = 1, 2,...

%C Examples:

%C - The set of divisors of a(1)= 42 contains only one primitive Pythagorean quadruple: (2, 3, 6, 7).

%C - The set of divisors of a(9) = 210 contains two primitive Pythagorean quadruples: (2, 3, 6, 7) and (2, 5, 14, 15).

%C - The set of divisors of a(21) = 420 contains three primitive Pythagorean quadruples: (2, 3, 6, 7), (2, 5, 14, 15) and (4, 5, 20, 21).

%C If k is in the sequence then so is m*k for m > 1.

%C Assumes the elements (x,y,z,m) in a quadruple are distinct divisors, as otherwise 6 would be in the sequence with 1^2+2^2+2^2=3^2. - _Chai Wah Wu_, Nov 16 2020

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanQuadruple.html">Pythagorean Quadruples</a>.

%F a(n) == 0 (mod 6).

%e 168 is in the sequence because the set of divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains the Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}. The first quadruple is primitive.

%p with(numtheory):

%p for n from 3 to 1200 do :

%p d:=divisors(n):n0:=nops(d):it:=0:

%p for i from 1 to n0-3 do:

%p for j from i+1 to n0-2 do :

%p for k from j+1 to n0-1 do:

%p for m from k+1 to n0 do:

%p if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2

%p then

%p it:=it+1:

%p else

%p fi:

%p od:

%p od:

%p od:

%p od:

%p if it>0 then

%p printf(`%d, `,n):

%p else fi:

%p od:

%t nq[n_] := If[ Mod[n,6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[ Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* _Giovanni Resta_, May 04 2020 *)

%o (PARI) isok(n) = {my(d=divisors(n), x); for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (issquare(d[i]^2 + d[j]^2 + d[k]^2, &x) && !(n % x), return(1)););););} \\ _Michel Marcus_, Nov 16 2020

%Y Cf. A027750, A169580, A330894, A331365.

%K nonn

%O 1,1

%A _Michel Lagneau_, May 01 2020