login
Numbers of the form (M_p^2-1)^2, where M_p is a Mersenne prime, A000668. Also the second element of the power-spectral basis of A330817.
10

%I #10 Jan 07 2020 22:54:16

%S 64,2304,921600,260112384,4501400872550400,295138898048817561600,

%T 75557287266261531623424

%N Numbers of the form (M_p^2-1)^2, where M_p is a Mersenne prime, A000668. Also the second element of the power-spectral basis of A330817.

%C The first element of the power-spectral basis of A330817 is A330819.

%F a(n) = (A000668(n)^2-1)^2.

%e If n=1, a(1)=(3^2-1)^2=64.

%p A330820:=[]:

%p for www to 1 do

%p for i from 1 to 31 do

%p #ithprime(31)=127

%p p:=ithprime(i);

%p q:=2^p-1;

%p if isprime(q) then x:=(q^2-1)^2; A330820:=[op(A330820),x] fi;

%p od;

%p od;

%p A330820;

%t Array[((2^MersennePrimeExponent[#] - 1)^2 - 1)^2 &, 10] (* _Amiram Eldar_, Jan 07 2020 *)

%Y Cf. A000043, A000668, A330817, A330818, A330819.

%K nonn

%O 1,1

%A _Walter Kehowski_, Jan 06 2020