Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 17 2020 14:32:00
%S 1,0,1,0,1,1,0,1,3,2,0,1,5,8,4,0,1,9,25,28,11,0,1,13,57,111,99,33,0,1,
%T 20,129,379,561,408,116,0,1,28,253,1057,2332,2805,1739,435,0,1,40,496,
%U 2833,8695,15271,15373,8253,1832,0,1,54,898,6824,28071,67790,98946,85870,40789,8167
%N Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
%F T(n,k) = A330935(2^n,k).
%e Triangle begins:
%e 1
%e 0 1
%e 0 1 1
%e 0 1 3 2
%e 0 1 5 8 4
%e 0 1 9 25 28 11
%e 0 1 13 57 111 99 33
%e 0 1 20 129 379 561 408 116
%e Row n = 5 counts the following chains (minimum and maximum not shown):
%e () (14) (113)->(14) (1112)->(113)->(14)
%e (23) (113)->(23) (1112)->(113)->(23)
%e (113) (122)->(14) (1112)->(122)->(14)
%e (122) (122)->(23) (1112)->(122)->(23)
%e (1112) (1112)->(14)
%e (1112)->(23)
%e (1112)->(113)
%e (1112)->(122)
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
%t paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
%t Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]
%Y Row sums are A213427.
%Y Main diagonal is A002846.
%Y Column k=3 is A007042.
%Y Dominated by A330784.
%Y The version for set partitions is A008826.
%Y The version for factorizations is A330935.
%Y Cf. A000111, A000258, A000311, A005121, A141268, A196545, A265947, A300383, A306186, A317141, A317176, A318813, A320160, A330679.
%K nonn,tabl
%O 1,9
%A _Gus Wiseman_, Jan 03 2020