login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(n, A309639(n)), where A309639(n) is the index of the least harmonic number H_i whose denominator (A002805) is divisible by n.
6

%I #11 Jan 11 2022 08:29:32

%S 1,2,3,4,5,3,7,8,9,5,11,4,13,7,5,16,17,9,19,5,3,11,23,3,25,13,27,7,29,

%T 5,31,32,11,17,7,9,37,19,13,8,41,3,43,11,9,23,47,16,49,25,17,13,53,27,

%U 11,8,19,29,59,5,61,31,9,64,13,11,67,17,3,7,71,9,73,37,25,19,11,13,79,16,81,41,83,3,17,43,29,11,89,9

%N a(n) = gcd(n, A309639(n)), where A309639(n) is the index of the least harmonic number H_i whose denominator (A002805) is divisible by n.

%H Antti Karttunen, <a href="/A330691/b330691.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = gcd(n, A309639(n)).

%F a(n) = n/A330692(n).

%t A309639[n_] := For[k = 1, True, k++, If[Divisible[Denominator[ HarmonicNumber[k]], n], Return[k]]];

%t a[n_] := GCD[n, A309639[n]];

%t Array[a, 105]

%o (PARI) A330691(n) = gcd(n, A309639(n));

%Y Cf. A000961 (fixed points).

%Y Cf. A002805, A309639, A330692, A330742.

%K nonn

%O 1,2

%A _Antti Karttunen_, Dec 29 2019