login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.
9

%I #14 Dec 30 2020 14:34:36

%S 1,1,2,8,70,1012,21944,665708,26917492,1399033348,90878863352,

%T 7214384973908,687197223963640,77354805301801012,10158257981179981304,

%U 1539156284259756811748,266517060496258245459352,52301515332984084095078308,11546416513975694879642736152

%N Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.

%C A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

%C A finite multiset is normal if it covers an initial interval of positive integers.

%H Andrew Howroyd, <a href="/A330676/b330676.txt">Table of n, a(n) for n = 0..200</a>

%e The a(0) = 1 through a(3) = 8 multisystems:

%e {} {1} {1,1} {{1},{1,1}}

%e {1,2} {{1},{1,2}}

%e {{1},{2,2}}

%e {{1},{2,3}}

%e {{2},{1,1}}

%e {{2},{1,2}}

%e {{2},{1,3}}

%e {{3},{1,2}}

%t allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];

%t Table[Sum[Length[Select[totm[m],Depth[#]==If[n<=1,2,n]&]],{m,allnorm[n]}],{n,5}]

%o (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

%o R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}

%o seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ _Andrew Howroyd_, Dec 30 2020

%Y Row sums of A330778.

%Y The case with all atoms equal is A000111.

%Y The case with all atoms different is A006472.

%Y The version allowing all depths is A330655.

%Y The unlabeled version is A330663.

%Y The version where the atoms are the prime indices of n is A330665.

%Y The strongly normal version is A330675.

%Y The version where the degrees are the prime indices of n is A330728.

%Y Multiset partitions of normal multisets are A255906.

%Y Series-reduced rooted trees with normal leaves are A316651.

%Y Cf. A000669, A001055, A005121, A005804, A318812, A330469, A330474, A330654, A330664, A330677, A330679.

%K nonn

%O 0,3

%A _Gus Wiseman_, Dec 30 2019

%E Terms a(8) and beyond from _Andrew Howroyd_, Dec 30 2019