%I #23 May 09 2024 04:25:41
%S 7,4,8,5,3,5,2,5,9,6,8,2,3,6,3,5,6,4,6,4,4,2,1,5,0,4,8,6,3,7,9,1,0,6,
%T 0,1,6,4,1,6,4,0,3,4,3,0,0,5,3,2,4,4,0,4,5,1,5,8,5,2,7,9,3,9,2,5,9,2,
%U 5,5,8,6,8,9,5,4,9,5,8,8,3,4,2,1,2,6,2,0,6,8,1,4,6,4,7,0,9,8,1,3,1,4,3,3,5,4
%N Decimal expansion of Product_{primes p} (1 - 1/p^2 + 1/p^3).
%C The asymptotic density of A337050. - _Amiram Eldar_, Aug 13 2020
%F Equals (6/Pi^2) * A065487. - _Amiram Eldar_, Jun 10 2020
%e 0.748535259682363564644215048637910601641640343005324404515852793925925...
%t Do[Print[N[Exp[-Sum[q = Expand[(p^2 - p^3)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 110]], {t, 20, 200, 20}]
%o (PARI) prodeulerrat(1 - 1/p^2 + 1/p^3) \\ _Amiram Eldar_, Mar 17 2021
%Y Cf. A057723, A065464, A065473, A065476, A065487, A328017, A330594, A330595, A337050, A372636.
%K nonn,cons
%O 0,1
%A _Vaclav Kotesovec_, Dec 19 2019