%I #15 Jun 14 2024 22:31:10
%S 60,168,360,504,660,1092,2448,2520,3420,4080,5616,6048,6072,7800,7920,
%T 9828,20160,20160,25920,29120,58800,62400,95040,126000,175560,181440,
%U 262080,443520,604800,979200,1451520,1814400
%N The orders, with repetition, of the non-cyclic finite simple groups whose orders are 23-smooth.
%C This is the intersection of A109379 and A080683. It should be a finite set; a proof thereof would be welcome.
%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
%H Hal M. Switkay, <a href="/A330583/b330583.txt">Table of n, a(n) for n = 1..102</a>
%H David A. Madore, <a href="http://www.madore.org/~david/math/simplegroups.html">Orders of non-abelian simple groups</a>
%H R. A. Wilson et al., <a href="http://brauer.maths.qmul.ac.uk/Atlas/v3/">ATLAS of Finite Group Representations - Version 3</a>
%e This list contains the orders of all non-cyclic finite simple groups < 12180. However, 29|12180, which is the order of L2(29).
%Y Cf. A109379, A080683.
%K nonn
%O 1,1
%A _Hal M. Switkay_, Dec 18 2019