Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 18 2019 17:23:45
%S 1,2,4,16,26,35,54,72,96
%N a(n) is the least integer k such that every ternary string of length >= k contains either a square or an n-antipower.
%C A square is two consecutive identical blocks, such as "201201". An n-antipower is n consecutive pairwise distinct blocks.
%C Here are the lexicographically least strings of length a(n)-1 having neither a square nor an n-antipower:
%C n = 3: 010
%C n = 4: 010201210201021
%C n = 5: 0102120102012102010212010
%C n = 6: 0102120102101201021201210201021012
%C n = 7: 01202120102012102120102101202120121021202101202120102
%C n = 8: 01020121012010210120212010201210120210201210120102101202102012101202102
%C n = 9: 01020121020102120210121020102120121020102101201021202101210212010210121020102120210120102120210
%H Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni, <a href="https://arxiv.org/abs/1606.02868">Anti-powers in infinite words</a>, arXiv:1606.02868 [cs.DM], 2016-2018.
%H Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni, <a href="https://doi.org/10.1016/j.jcta.2018.02.009">Anti-powers in infinite words</a>, Journal of Combinatorial Theory, Series A 157 (2018), 109-119.
%K nonn,more
%O 1,2
%A _Jeffrey Shallit_, Dec 18 2019