OFFSET
1,1
COMMENTS
Theorem: k must have a zero digit.
Proof: If not, let s be the smallest digit in k. Then d = (k mod s) is a digit of k, and d < s. Contradiction.
Pandigital numbers (A171102) are necessarily an infinite subset. - Hans Havermann, Jan 02 2020
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..25000
EXAMPLE
401 is a term since 401 mod 4 = 1 and 401 mod 1 = 0, and 1 and 0 are both digits of 401.
MATHEMATICA
Select[Range@ 600, Function[{k, d}, AllTrue[DeleteCases[d, 0], ! FreeQ[d, Mod[k, #]] &]] @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Jan 01 2020 *)
PROG
(PARI) is(k) = my (d=Set(digits(k))); for (i=1, #d, if (d[i] && setsearch(d, k%d[i])==0, return (0))); return (1) \\ Rémy Sigrist, Jan 01 2020
(Magma) [k:k in [1..600]| forall{c:c in Set(Intseq(k)) diff {0}| k mod c in Intseq(k)}]; // Marius A. Burtea, Jan 01 2020
(Python)
def ok(n): s = set(map(int, str(n))); return all(n%d in s for d in s-{0})
print([k for k in range(1, 600) if ok(k)]) # Michael S. Branicky, Dec 23 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 31 2019, following a suggestion from Eric Angelini
STATUS
approved