login
a(n) is equal to a(n-1) plus (a(n-1) written in base n but interpreted in base n+1), with a(1)=1.
0

%I #25 Jan 24 2020 01:05:50

%S 1,2,4,9,19,41,87,193,427,940,2049,4619,10363,22921,50522,111018,

%T 248438,554112,1232067,2723158,6003186,13446356,30050952,66594552,

%U 147234100,324832999,714046741,1585188074,3511557725,7762753394,17129248715,37693951852,82773271861

%N a(n) is equal to a(n-1) plus (a(n-1) written in base n but interpreted in base n+1), with a(1)=1.

%e Given the 5th term in the sequence, the next (6th) term is the 5th term plus the result obtained by taking the 5th term's digits in order in base 6 (the index of the next term) and incrementing the base by 1 without changing the digits.

%e In this example, a(5) = 19 = 31_6; incrementing the base of 31_6 without changing the digits gives 31_7 = 22, and a(6) = a(5) + 22 = 19 + 22 = 41.

%e .

%e digits

%e of a(n-1)

%e a(n-1) interpreted

%e in in base n+1

%e n a(n-1) base n = k k + a(n-1) = a(n)

%e - ------ ------ ----------- -------------------

%e 1 1

%e 2 1 1_2 1_3 = 1 1 + 1 = 2

%e 3 2 2_3 2_4 = 2 2 + 2 = 4

%e 4 4 10_4 10_5 = 5 5 + 4 = 9

%e 5 9 14_5 14_6 = 10 10 + 9 = 19

%e 6 19 31_6 31_7 = 22 22 + 19 = 41

%e 7 41 56_7 56_8 = 46 46 + 41 = 87

%e 8 87 127_8 127_9 = 106 106 + 87 = 193

%t a[n_] := a[n] = a[n-1] + FromDigits[ IntegerDigits[ a[n-1], n], n + 1]; Array[a, 33] (* _Giovanni Resta_, Dec 16 2019 *)

%o (PARI) lista(nn) = {my(a = 1); print1(a, ", "); for (n=2, nn, a += fromdigits(digits(fromdigits(digits(a, n), n+1))); print1(a, ", "););} \\ _Michel Marcus_, Dec 16 2019

%K nonn,base,easy

%O 1,2

%A _Tristan Young_, Dec 15 2019