|
|
A330427
|
|
Primes P where the nearest prime is greater than 3*log(P) away.
|
|
4
|
|
|
38501, 58831, 153191, 203713, 206699, 232259, 247141, 250543, 268343, 279269, 286927, 302053, 330509, 362521, 362801, 404597, 413353, 421559, 430193, 438091, 479081, 479701, 485263, 504727, 512207, 515041, 539573, 539993, 546781, 569369, 574859, 590489, 624917
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The author suggests that these numbers be called Triple Frogger Primes because three times the distance as the average distance to the nearest neighbor (the log) has to be hopped.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..1000
|
|
MAPLE
|
q:= 3: state:= false: count:= 0: Res:= NULL:
while count < 100 do
p:= nextprime(q);
newstate:= is(p-q > 3*log(q));
if state and newstate then
count:= count+1; Res:= Res, q;
fi;
q:= p; state:= newstate;
od:
Res; # Robert Israel, Dec 18 2019
|
|
MATHEMATICA
|
Select[Prime@ Range[10^5], Min@ Abs[# - NextPrime[#, {-1, 1}]] > 3 Log[#] &] (* Michael De Vlieger, Dec 15 2019 *)
|
|
PROG
|
(MAGMA) f:=func<p|Abs(p-NextPrime(p)) gt 3*Log(p) and Abs(p-PreviousPrime(p)) gt 3*Log(p)>; [p:p in PrimesUpTo(630000)|f(p)]; // Marius A. Burtea, Dec 18 2019
(PARI) lista(nn) = {my(x=2, y=3); forprime(p=5, nn, if(min(p-y, y-x)>3*log(y), print1(y, ", ")); x=y; y=p); } \\ Jinyuan Wang, Mar 03 2020
|
|
CROSSREFS
|
Cf. A288908 (with 1*log(P)), A330426 (with 2*log(P)), A330428 (Lowest Frogger Primes).
Sequence in context: A013873 A050766 A250712 * A289824 A321494 A252103
Adjacent sequences: A330424 A330425 A330426 * A330428 A330429 A330430
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Steven M. Altschuld, Dec 14 2019
|
|
EXTENSIONS
|
More terms from Michael De Vlieger, Dec 15 2019
|
|
STATUS
|
approved
|
|
|
|