login
Lexicographically earliest sequence of distinct terms starting with a(1) = 1 ("un") such that the letter count of a(n) + the letter count of a(n+1) = the letter count of [a(n) + a(n+1)]. This is the French version of A330365 (see Crossrefs section).
0

%I #5 Jan 12 2020 13:45:56

%S 1,13,20,2,30,3,40,4,50,5,9,10,7,17,6,15,8,26,100,11,16,18,60,12,109,

%T 35,209,65,309,70,107,36,106,28,116,38,160,14,110,67,130,68,210,69,

%U 105,19,205,39,260,37,206,48,306,91,406,1000,21,1100,22,2000,23,2100,24,3000,25,3100,27,4000,29,4100,31,5000

%N Lexicographically earliest sequence of distinct terms starting with a(1) = 1 ("un") such that the letter count of a(n) + the letter count of a(n+1) = the letter count of [a(n) + a(n+1)]. This is the French version of A330365 (see Crossrefs section).

%e un + treize = quatorze (8 letters on both sides of the equal sign);

%e treize + vingt = trente-trois (11 letters on both sides);

%e vingt + deux = vingt-deux (9 letters on both sides);

%e deux + trente = trente-deux (10 letters on both sides); etc.

%Y Cf. A330365 (English original version).

%K nonn,word

%O 1,2

%A _Eric Angelini_ and _Jean-Marc Falcoz_, Dec 14 2019