login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330268
Greedy base sqrt(5) expansion of 1/2.
1
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2
OFFSET
0,30
COMMENTS
To write a real number in a non-integer base, the greedy algorithm takes the largest possible integer digit in the range 0 <= digit < base at each digit position from high to low. Kempner considers this as a "canonical" representation and for base sqrt(5) gives the present sequence as an example canonical 1/2 = .100101... (section IV, page 616).
LINKS
Aubrey J. Kempner, Anormal Systems of Numeration, American Mathematical Monthly, volume 43, number 10, December 1936, pages 610-617.
FORMULA
Sum_{n>=0} a(n)/sqrt(5)^(n+1) = 1/2.
EXAMPLE
0.100101101110100010101001000102000... = 1/sqrt(5) + 1/sqrt(5)^4 + 1/sqrt(5)^6 + ...
PROG
(PARI) a_vector(len) = my(v=vector(len), sqrt5=quadgen(20), r=1/2); for(i=1, len, r*=sqrt5; v[i]=floorQuad(r); r-=v[i]); v;
floorQuad(x) = my(ret=0); while(x>=1, ret++; x--); ret; \\ pending GP 2.13.x which will allow floor() of quads
CROSSREFS
Sequence in context: A341025 A364044 A269247 * A089310 A129753 A356324
KEYWORD
base,nonn
AUTHOR
Kevin Ryde, Dec 07 2019
STATUS
approved