Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 10 2019 20:03:10
%S 1,3,6,10,14,20,24,30,36,44,48,60,60,62,72,82,88,96,112,120,120,136,
%T 148,164,152,154,148,162,176,190,196,210,216,224,228,248,272,284,296,
%U 300,296,320,332,356,356,376,400,416,380,382,376,382,356,374,392,410
%N Number of length-n ternary squarefree words having no occurrences of either 010 or 212.
%C An example of such a word is A036577.
%D A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1-67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413-478.
%H Robert Israel, <a href="/A330257/b330257.txt">Table of n, a(n) for n = 0..1000</a>
%H J. Berstel, <a href="http://www-igm.univ-mlv.fr/~berstel/Articles/1994ThueTranslation.pdf">Axel Thue's papers on repetitions in words: a translation</a>, Publications du Laboratoire de Combinatoire et d'Informatique Mathématique, Vol. 20, Université du Québec à Montréal, February 1995.
%p filter:= proc(s) local n,j,cands;
%p n:= length(s);
%p if n >= 3 and (s[1..3] = "010" or s[1..3]="212") then return false fi;
%p for j from 1 to min(n/2, 5) do
%p if s[1..j] = s[j+1..2*j] then return false fi;
%p od;
%p if n >= 12 then
%p cands:= select(j -> j > 1 and j <= ceil((1+n)/2), {StringTools:-SearchAll(s[1..6],s)});
%p for j in cands do if s[1..j-1] = s[j..2*j-2] then return false fi od;
%p fi;
%p true
%p end proc:
%p S[0]:= {""}:
%p for n from 1 to 100 do
%p S[n]:= select(filter, map(t -> (cat("0",t),cat("1",t),cat("2",t)), S[n-1]));
%p od:
%p seq(nops(S[i]),i=0..100); # _Robert Israel_, Dec 10 2019
%Y Cf. A036577, A330258, A330259.
%K nonn,look
%O 0,2
%A _Jeffrey Shallit_, Dec 07 2019