The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330152 Absolute multiplicative persistence: a(n) is the least number with multiplicative persistence n for some base b > 1. 0
 0, 2, 8, 23, 52, 127, 218, 412, 542, 692, 1471, 2064, 2327, 4739, 13025, 16213, 20388, 45407, 82605, 123706, 207778, 323382, 605338, 905670, 1033731, 2041995, 3325970, 4282238, 7638962, 9840138, 10364329 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..30. Edson de Faria and Charles Tresser, On Sloane's persistence problem, arXiv preprint arXiv:1307.1188 [math.DS], 2013. Edson de Faria and Charles Tresser, On Sloane's persistence problem, Experimental Math., 23 (No. 4, 2014), 363-382. Brady Haran and Matt Parker, What's special about 277777788888899?, Numberphile video, 2019. Tim Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7. Stephanie Perez and Robert Styer, Persistence: A Digit Problem, Involve, Vol. 8 (2015), No. 3, 439-446. N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98. Eric Weisstein's World of Mathematics, Multiplicative Persistence EXAMPLE 2 when represented in base 2 goes 10 -> 0 and has an absolute persistence of 1, so a(1) = 2. 8 when represented in base 3 goes 22 -> 11 -> 1 and has an absolute persistence of 2, so a(2) = 8. 23 when represented in base 6 goes 35 -> 23 -> 10 -> 1 and has absolute persistence of 3, so a(3) = 23 (Cf. A064867). 52 when represented in base 9 goes 57 -> 38 -> 26 -> 13 -> 3 and has absolute persistence of 4, so a(4) = 52 (Cf. A064868). PROG (Python) from math import prod from sympy.ntheory.digits import digits def mp(n, b): # multiplicative persistence of n in base b c = 0 while n >= b: n, c = prod(digits(n, b)[1:]), c+1 return c def a(n): k = 0 while True: if any(mp(k, b)==n for b in range(2, max(3, k))): return k k += 1 print([a(n) for n in range(11)]) # Michael S. Branicky, Sep 17 2021 CROSSREFS Cf. A003001, A064867, A064868, A064869, A064870, A064871, A064872. Sequence in context: A190021 A014285 A331756 * A079460 A154144 A255942 Adjacent sequences: A330149 A330150 A330151 * A330153 A330154 A330155 KEYWORD nonn,base,more AUTHOR Tim Lamont-Smith, Nov 29 2019 EXTENSIONS a(19)-a(27) from Giovanni Resta, Jan 20 2020 a(28)-a(30) from Michael S. Branicky, Sep 17 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 18:29 EDT 2023. Contains 363019 sequences. (Running on oeis4.)